1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
|
#include "curvemap.h"
#include <cassert>
#include <cmath>
namespace
{
using CurveValue = CurveMap::CurveValue;
using CurveValuePair = CurveMap::CurveValuePair;
CurveValue h00(CurveValue x)
{
return (1 + 2 * x) * pow(1 - x, 2);
}
CurveValue h10(CurveValue x)
{
return x * pow(1 - x, 2);
}
CurveValue h01(CurveValue x)
{
return x * x * (3 - 2 * x);
}
CurveValue h11(CurveValue x)
{
return x * x * (x - 1);
}
CurveValue computeValue(const CurveValue x, const CurveValuePair& P0, const CurveValuePair& P1,
const CurveValue m0, const CurveValue m1)
{
const auto x0 = P0.in;
const auto x1 = P1.in;
const auto y0 = P0.out;
const auto y1 = P1.out;
const auto dx = x1 - x0;
const auto x_prime = (x - x0)/dx;
return
h00(x_prime) * y0 +
h10(x_prime) * dx * m0 +
h01(x_prime) * y1 +
h11(x_prime) * dx * m1;
}
}
constexpr std::array<CurveValuePair, 3> CurveMap::default_fixed;
CurveValue CurveMap::map(CurveValue in)
{
assert(in >= 0. && in <= 1.);
if (invert)
{
in = 1.0 - in;
}
if (spline_needs_update)
{
updateSpline();
}
CurveValue out;
if (in < fixed[0].in)
{
out = shelf ? fixed[0].out
: computeValue(in, {0.,0.}, fixed[0], m[0], m[1]);
}
else if (in < fixed[1].in)
{
out = computeValue(in, fixed[0], fixed[1], m[1], m[2]);
}
else if (in < fixed[2].in)
{
out = computeValue(in, fixed[1], fixed[2], m[2], m[3]);
}
else
{
out = shelf ? fixed[2].out
: computeValue(in, fixed[2], {1.,1.}, m[3], m[4]);
}
assert(out >= 0. && out <= 1.);
return out;
}
void CurveMap::reset()
{
*this = CurveMap{};
updateSpline();
}
void CurveMap::setFixed0(CurveValuePair new_value)
{
auto prev = fixed[0];
fixed[0].in = clamp(new_value.in, eps, fixed[1].in - eps);
fixed[0].out = clamp(new_value.out, eps, fixed[1].out - eps);
if (fixed[0] != prev)
{
spline_needs_update = true;
}
}
void CurveMap::setFixed1(CurveValuePair new_value)
{
auto prev = fixed[1];
fixed[1].in = clamp(new_value.in, fixed[0].in + eps, fixed[2].in - eps);
fixed[1].out = clamp(new_value.out, fixed[0].out + eps, fixed[2].out - eps);
if (fixed[1] != prev)
{
spline_needs_update = true;
}
}
void CurveMap::setFixed2(CurveValuePair new_value)
{
auto prev = fixed[2];
fixed[2].in = clamp(new_value.in, fixed[1].in + eps, 1 - eps);
fixed[2].out = clamp(new_value.out, fixed[1].out + eps, 1 - eps);
if (fixed[2] != prev)
{
spline_needs_update = true;
}
}
void CurveMap::setInvert(bool enable)
{
if (invert != enable)
{
spline_needs_update = true;
invert = enable;
}
}
void CurveMap::setShelf(bool enable)
{
if (shelf != enable)
{
spline_needs_update = true;
shelf = enable;
}
}
CurveValuePair CurveMap::getFixed0() const
{
return fixed[0];
}
CurveValuePair CurveMap::getFixed1() const
{
return fixed[1];
}
CurveValuePair CurveMap::getFixed2() const
{
return fixed[2];
}
bool CurveMap::getInvert() const {
return invert;
}
bool CurveMap::getShelf() const {
return shelf;
}
void CurveMap::updateSpline()
{
assert(0. <= fixed[0].in && fixed[0].in < fixed[1].in &&
fixed[1].in < fixed[2].in && fixed[2].in <= 1.);
assert(0. <= fixed[0].out && fixed[0].out <= fixed[1].out &&
fixed[1].out <= fixed[2].out && fixed[2].out <= 1.);
CurveValues X = shelf ? CurveValues{fixed[0].in, fixed[1].in, fixed[2].in}
: CurveValues{0., fixed[0].in, fixed[1].in, fixed[2].in, 1.};
CurveValues Y = shelf ? CurveValues{fixed[0].out, fixed[1].out, fixed[2].out}
: CurveValues{0., fixed[0].out, fixed[1].out, fixed[2].out, 1.};
auto slopes = calcSlopes(X, Y);
if (shelf)
{
assert(slopes.size() == 3);
this->m[1] = slopes[0];
this->m[2] = slopes[1];
this->m[3] = slopes[2];
}
else
{
assert(slopes.size() == 5);
for (std::size_t i = 0; i < m.size(); ++i)
{
this->m[i] = slopes[i];
}
}
spline_needs_update = false;
}
std::vector<float> CurveMap::calcSlopes(const CurveValues& X, const CurveValues& Y)
{
CurveValues m(X.size());
CurveValues d(X.size() - 1);
CurveValues h(X.size() - 1);
for (std::size_t i = 0; i < d.size(); ++i)
{
h[i] = X[i + 1] - X[i];
d[i] = (Y[i + 1] - Y[i]) / h[i];
}
m.front() = d.front();
for (std::size_t i = 1; i < m.size() - 1; ++i)
{
m[i] = (d[i - 1] + d[i]) / 2.;
}
m.back() = d.back();
for (std::size_t i = 1; i < m.size() - 1; ++i)
{
const auto min_d = 2*std::min(d[i - 1], d[i]);
m[i] =
std::min<float>(min_d,
(h[i] * d[i - 1] + h[i - 1] * d[i]) / (h[i - 1] + h[i]));
}
return m;
}
CurveValue CurveMap::clamp(CurveValue in, CurveValue min, CurveValue max) const
{
return std::max(min, std::min(in, max));
}
bool CurveMap::operator==(const CurveMap& other) const
{
return getFixed0() == other.getFixed0() &&
getFixed1() == other.getFixed1() &&
getFixed2() == other.getFixed2() &&
getShelf() == other.getShelf() &&
getInvert() == other.getInvert();
}
|