/* -*- Mode: c++ -*- */ /*************************************************************************** * powermap.cc * * Fri Apr 17 23:06:12 CEST 2020 * Copyright 2020 André Nusser * andre.nusser@googlemail.com ****************************************************************************/ /* * This file is part of DrumGizmo. * * DrumGizmo is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * DrumGizmo is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with DrumGizmo; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ #include "curvemap.h" #include #include namespace { using CurveValue = CurveMap::CurveValue; using CurveValuePair = CurveMap::CurveValuePair; CurveValue h00(CurveValue x) { return (1 + 2 * x) * pow(1 - x, 2); } CurveValue h10(CurveValue x) { return x * pow(1 - x, 2); } CurveValue h01(CurveValue x) { return x * x * (3 - 2 * x); } CurveValue h11(CurveValue x) { return x * x * (x - 1); } CurveValue computeValue(const CurveValue x, const CurveValuePair& P0, const CurveValuePair& P1, const CurveValue m0, const CurveValue m1) { const auto x0 = P0.in; const auto x1 = P1.in; const auto y0 = P0.out; const auto y1 = P1.out; const auto dx = x1 - x0; const auto x_prime = (x - x0)/dx; return h00(x_prime) * y0 + h10(x_prime) * dx * m0 + h01(x_prime) * y1 + h11(x_prime) * dx * m1; } } // end anonymous namespace constexpr std::array CurveMap::default_fixed; CurveValue CurveMap::map(CurveValue in) { assert(in >= 0. && in <= 1.); if (invert) { in = 1.0 - in; } if (spline_needs_update) { updateSpline(); } CurveValue out; if (in < fixed[0].in) { out = shelf ? fixed[0].out : computeValue(in, {0.,0.}, fixed[0], m[0], m[1]); } else if (in < fixed[1].in) { out = computeValue(in, fixed[0], fixed[1], m[1], m[2]); } else if (in < fixed[2].in) { out = computeValue(in, fixed[1], fixed[2], m[2], m[3]); } else { // in >= fixed[2].in out = shelf ? fixed[2].out : computeValue(in, fixed[2], {1.,1.}, m[3], m[4]); } assert(out >= 0. && out <= 1.); return out; } void CurveMap::reset() { *this = CurveMap{}; updateSpline(); } void CurveMap::setFixed0(CurveValuePair new_value) { auto prev = fixed[0]; fixed[0].in = clamp(new_value.in, eps, fixed[1].in - eps); fixed[0].out = clamp(new_value.out, eps, fixed[1].out - eps); if (fixed[0] != prev) { spline_needs_update = true; } } void CurveMap::setFixed1(CurveValuePair new_value) { auto prev = fixed[1]; fixed[1].in = clamp(new_value.in, fixed[0].in + eps, fixed[2].in - eps); fixed[1].out = clamp(new_value.out, fixed[0].out + eps, fixed[2].out - eps); if (fixed[1] != prev) { spline_needs_update = true; } } void CurveMap::setFixed2(CurveValuePair new_value) { auto prev = fixed[2]; fixed[2].in = clamp(new_value.in, fixed[1].in + eps, 1 - eps); fixed[2].out = clamp(new_value.out, fixed[1].out + eps, 1 - eps); if (fixed[2] != prev) { spline_needs_update = true; } } void CurveMap::setInvert(bool enable) { if (invert != enable) { spline_needs_update = true; invert = enable; } } void CurveMap::setShelf(bool enable) { if (shelf != enable) { spline_needs_update = true; shelf = enable; } } CurveValuePair CurveMap::getFixed0() const { return fixed[0]; } CurveValuePair CurveMap::getFixed1() const { return fixed[1]; } CurveValuePair CurveMap::getFixed2() const { return fixed[2]; } bool CurveMap::getInvert() const { return invert; } bool CurveMap::getShelf() const { return shelf; } // This mostly followes the wikipedia article for monotone cubic splines: // https://en.wikipedia.org/wiki/Monotone_cubic_interpolation void CurveMap::updateSpline() { assert(0. <= fixed[0].in && fixed[0].in < fixed[1].in && fixed[1].in < fixed[2].in && fixed[2].in <= 1.); assert(0. <= fixed[0].out && fixed[0].out <= fixed[1].out && fixed[1].out <= fixed[2].out && fixed[2].out <= 1.); CurveValues X = shelf ? CurveValues{fixed[0].in, fixed[1].in, fixed[2].in} : CurveValues{0., fixed[0].in, fixed[1].in, fixed[2].in, 1.}; CurveValues Y = shelf ? CurveValues{fixed[0].out, fixed[1].out, fixed[2].out} : CurveValues{0., fixed[0].out, fixed[1].out, fixed[2].out, 1.}; auto slopes = calcSlopes(X, Y); if (shelf) { assert(slopes.size() == 3); this->m[1] = slopes[0]; this->m[2] = slopes[1]; this->m[3] = slopes[2]; } else { assert(slopes.size() == 5); for (std::size_t i = 0; i < m.size(); ++i) { this->m[i] = slopes[i]; } } spline_needs_update = false; } // This follows the monotone cubic spline algorithm of Steffen, from: // "A Simple Method for Monotonic Interpolation in One Dimension" std::vector CurveMap::calcSlopes(const CurveValues& X, const CurveValues& Y) { CurveValues m(X.size()); CurveValues d(X.size() - 1); CurveValues h(X.size() - 1); for (std::size_t i = 0; i < d.size(); ++i) { h[i] = X[i + 1] - X[i]; d[i] = (Y[i + 1] - Y[i]) / h[i]; } m.front() = d.front(); for (std::size_t i = 1; i < m.size() - 1; ++i) { m[i] = (d[i - 1] + d[i]) / 2.; } m.back() = d.back(); for (std::size_t i = 1; i < m.size() - 1; ++i) { const auto min_d = 2*std::min(d[i - 1], d[i]); m[i] = std::min(min_d, (h[i] * d[i - 1] + h[i - 1] * d[i]) / (h[i - 1] + h[i])); } return m; } CurveValue CurveMap::clamp(CurveValue in, CurveValue min, CurveValue max) const { return std::max(min, std::min(in, max)); } bool CurveMap::operator==(const CurveMap& other) const { return getFixed0() == other.getFixed0() && getFixed1() == other.getFixed1() && getFixed2() == other.getFixed2() && getShelf() == other.getShelf() && getInvert() == other.getInvert(); }