diff options
author | André Nusser <andre.nusser@googlemail.com> | 2019-03-08 01:21:24 +0100 |
---|---|---|
committer | André Nusser <andre.nusser@googlemail.com> | 2019-05-11 14:54:51 +0200 |
commit | ee41b02f78a81cb96365c56f7a8dd69d7f6e7d72 (patch) | |
tree | 917f888174cf129c21ce945b34f431c0cb5d5eb6 /src/sample_selection.cc | |
parent | dcff4b6914d07c6dcff9cbbdc93dc0f4dc146d44 (diff) |
Optimized version of new sample selection.
Diffstat (limited to 'src/sample_selection.cc')
-rw-r--r-- | src/sample_selection.cc | 51 |
1 files changed, 44 insertions, 7 deletions
diff --git a/src/sample_selection.cc b/src/sample_selection.cc index 8616e09..8319017 100644 --- a/src/sample_selection.cc +++ b/src/sample_selection.cc @@ -32,6 +32,8 @@ #include "random.h" #include "settings.h" +#include <algorithm> + namespace { @@ -181,6 +183,7 @@ const Sample* SampleSelection::getObjective(level_t level, std::size_t pos) float distance_opt = 0.; float recent_opt = 0.; + // TODO: check how much sense all of this actually makes // Select normal distributed value between // (stddev/2) and (power_span-stddev/2) float lvl = rand.normalDistribution(mean, stddev); @@ -200,26 +203,60 @@ const Sample* SampleSelection::getObjective(level_t level, std::size_t pos) // TODO: start with most promising power value and then stop when reaching far values // which cannot become opt anymore - for (std::size_t i = 0; i < samples.size(); ++i) + // TODO: can we expect the powerlist to be sorted? If not, add to finalise of powerlist. + // TODO: clean up this mess + auto closest_it = std::lower_bound(samples.begin(), samples.end(), level); + std::size_t up_index = std::distance(samples.begin(), closest_it); + std::size_t down_index = (up_index == 0 ? 0 : up_index - 1); + float up_value_lb = (up_index < samples.size() ? alpha*pow2(samples[up_index].power-lvl) : std::numeric_limits<float>::max()); + float down_value_lb = (up_index != 0 ? alpha*pow2(samples[down_index].power-lvl) : std::numeric_limits<float>::max()); + do { - auto const& item = samples[i]; + std::size_t current_index; + if (up_value_lb < down_value_lb) + { + current_index = up_index; + if (up_index != samples.size()-1) + { + ++up_index; + up_value_lb = alpha*pow2(samples[up_index].power-lvl); + } + else + { + up_value_lb = std::numeric_limits<float>::max(); + } + } + else + { + current_index = down_index; + if (down_index != 0) + { + --down_index; + down_value_lb = alpha*pow2(samples[down_index].power-lvl); + } + else + { + down_value_lb = std::numeric_limits<float>::max(); + } + } - // compute objective function value auto random = rand.floatInRange(0.,1.); - auto distance = item.power - lvl; - auto recent = (float)settings.samplerate/std::max<std::size_t>(pos - last[i], 1); + auto distance = samples[current_index].power - lvl; + auto recent = (float)settings.samplerate/std::max<std::size_t>(pos - last[current_index], 1); auto value = alpha*pow2(distance) + beta*pow2(recent) + gamma*random; if (value < value_opt) { - index_opt = i; - power_opt = item.power; + index_opt = current_index; + power_opt = samples[current_index].power; value_opt = value; random_opt = random; distance_opt = distance; recent_opt = recent; } + --current_index; } + while (up_value_lb <= value_opt || down_value_lb <= value_opt); DEBUG(rand, "Chose sample with index: %d, value: %f, power %f, random: %f, distance: %f, recent: %f", (int)index_opt, value_opt, power_opt, random_opt, distance_opt, recent_opt); |